Skip to main content Skip to navigation

Can Future US Bioenergy Production Coexist with Avian Biodiversity

Posted by Greg Crouch | July 25, 2016

Speaker: Dr. Yetta Jager
Breakout Session C | Discussion Group – Expanding the Bioenergy Paradigm: Certification and Multi-Use Options
View PDF | Watch Presentation

Our research seeks to understand how the future bioenergy landscape could change ecosystem services, including provision of energy, regulation of water quality, and support of habitat for biodiversity. We evaluated these ecosystem services under projections of biomass potential under two scenarios that contrast spatially intensive vs. extensive feedstock production. These scenarios were developed by manipulating future yield assumptions within the Policy Analysis System economic model (POLYSYS) for the US agricultural sector. We developed a tool, Bioenergy Ecosystem Services Tool (BioEST) to project future change in ecosystem services including energy feedstock yields and habitat for multiple species of grassland birds. As the first step, species distribution models (SDMs) were developed with climate, elevation, and land use as predictors. As the second step, we developed local landuse/landcover (LULC) effect models to estimate for habitat quality as a function of crop cover and management. LULC-effect models estimated marginal effects of different crops in the current landscape on species presence from fitted SDMs. We developed LULC-effect models for 2nd generation energy crops and for lands managed for residue removal by compiling relative densities between current LULCs and advanced bioenergy crops for each bird species. In addition to local effects of each LULC, BioEST considers spatial juxtaposition with the surrounding matrix – i.e., habitat is considered suitable only if, together with surrounding parcels, it exceeds minimum habitat area for the species. Finally, we allocate bioenergy production among parcels within individual counties to achieve maximal potential habitat for representative species of birds. Preliminary results demonstrated potential for finding landscape arrangements that support both biodiversity and bioenergy as complementary ecosystem services.